
Module 3: Syntax Analysis (Parsing)

This module is about the compiler's crucial "grammar check"
phase: Syntax Analysis, also known as Parsing. After the
Lexical Analyzer has broken the raw source code into
meaningful "words" (tokens), the parser steps in to ensure
these words are arranged according to the language's rules,
forming grammatically correct "sentences" and "paragraphs."
We'll explore the formal definitions of language structure, how
parsers systematically verify this structure, and the tools that
automate this complex task.

1. Context-Free Grammars (CFG) - The Language's Blueprint

Think of a Context-Free Grammar (CFG) as the definitive rulebook or blueprint for a
programming language's syntax. It's a formal, mathematical way to describe all the possible
legal sequences of words (tokens) that can form valid programs in that language. Without a
precise grammar, a compiler wouldn't know how to interpret your code.

A CFG is precisely defined by four components:

● V (Variables / Non-terminals): The Abstract Categories
○ These are abstract, conceptual symbols that represent structures or

constructs within the language. They are "non-terminal" because they are not
the final "words" of the program but rather categories that can be broken
down further.

○ Analogy: In English grammar, words like "Noun Phrase," "Verb Phrase," or
"Sentence" are non-terminals. You can't say "I saw a Noun Phrase"; you need
to expand "Noun Phrase" into actual words.

○ In Programming: Examples include:
■ Statement: An action like an assignment, an if block, or a loop.
■ Expression: A computation that evaluates to a value (e.g., x + y,

10 * 5).
■ Declaration: How you introduce a variable or function (e.g., int

x;).
■ Program: The top-level structure representing the entire code file.

○ These symbols help define the hierarchy of the language.
● T (Terminals): The Concrete Tokens (Words)

○ These are the actual, tangible "words" or tokens that the lexical analyzer
produces. They are "terminal" because they cannot be broken down further
within the grammar rules; they are the basic building blocks.

○ Analogy: In English, these are the actual words like "the," "cat," "runs,"
"quickly."

○ In Programming: Examples include:
■ Keywords: if, else, while, int, return.
■ Operators: +, -, *, /, =, <.
■ Punctuation: ;, ,, (,), {, }.
■ Literal values: NUM (for a number like 123), ID (for an identifier like

myVariable).
○ These are the symbols that appear directly in your source code.

● P (Productions / Production Rules): The Building Instructions
○ These are the core rules that specify how non-terminals can be replaced by

sequences of other non-terminals and/or terminals. Each rule is like a recipe
that tells you how to construct a larger grammatical unit from smaller ones.

○ Format: Non-terminal -> Sequence_of_Symbols
○ The -> symbol means "can be replaced by" or "consists of."
○ Analogy:

■ Sentence -> Noun_Phrase Verb_Phrase (A sentence consists
of a noun phrase followed by a verb phrase).

■ Noun_Phrase -> Article Noun (A noun phrase can be an article
followed by a noun).

○ In Programming:
■ Statement -> if (Expression) Statement else

Statement
■ This rule says: A Statement can be formed by the keyword

if, followed by an opening parenthesis (, an Expression, a
closing parenthesis), another Statement, the keyword
else, and finally, another Statement.

■ Expression -> ID + NUM
■ This rule says: An Expression can be formed by an ID

token, followed by a + token, and then a NUM token.
○ A grammar can have multiple rules for the same non-terminal, representing

different ways to form that construct (e.g., Statement could also be
Statement -> ID = Expression ;).

● S (Start Symbol): The Grand Goal
○ This is a special non-terminal that represents the highest-level grammatical

category in the language. It's the ultimate goal of the parsing process. A
successful parse means that the entire input program can be derived from
this start symbol.

○ Analogy: In English, it might be "Story" or "Book." In a programming
language, it's typically Program or CompilationUnit.

● Why CFGs are Important:

○ Formal Specification: They provide an unambiguous way to define the
syntax of a language, acting as a contract between the language designer
and the compiler implementer.

○ Automatic Parser Generation: They are the input for tools (parser
generators) that automatically build the parser component of a compiler.

○ Error Detection: If a program's structure doesn't conform to the CFG, the
parser can detect and report syntax errors.

Example CFG (for a tiny arithmetic calculator, expanded):

Let's use a slightly more detailed example for a calculator that handles addition, subtraction,
multiplication, division, parentheses, numbers, and variables.

● V=textProgram,Statement,Expression,Term,Factor,IDList
● $T = { \\text{ID, NUM, +, -, *, /, (,), =, ;, var} }$
● S=textProgram
● P:

1. textProgramtotextStatementProgramquadtext(Aprogramisastatementfollowed
bymoreprogramor...)

2. textProgramtovarepsilonquadtext(...anemptyprogram,meaningtheend)
3. textStatementtotextvarIDList;quadtext(Variabledeclaration)
4. textStatementtotextID=Expression;quadtext(Assignmentstatement)
5. textIDListtotextIDquadtext(Asingleidentifier)
6. textIDListtotextID,IDListquadtext(Multipleidentifiersseparatedbycommas)
7. textExpressiontotextExpression+Term
8. textExpressiontotextExpression−Term
9. textExpressiontotextTerm
10. $\\text{Term} \\to \\text{Term * Factor}$
11. textTermtotextTerm/Factor
12. textTermtotextFactor
13. textFactorto(textExpression)
14. textFactortotextID
15. textFactortotextNUM

(Note: varepsilon denotes an empty string, meaning a non-terminal can derive nothing.)

2. Concept of Parsing - The Syntax Checker

Parsing is the compiler's "syntax police." Its job is to take the stream of tokens (words) from
the lexical analyzer and determine if they form a grammatically valid program according to
the rules defined by the Context-Free Grammar. If the arrangement of tokens makes sense
structurally, the parser creates a hierarchical representation of the program. If not, it flags a
syntax error.

● What Parsing Achieves:
○ Syntax Validation: The primary goal. It ensures that your code follows the

structural rules of the language (e.g., if statements have parentheses,

semicolons are in the right places, variables are used correctly in
expressions).

○ Structure Representation: It builds a tree-like structure that captures the
relationships between different parts of your code. This structure is crucial for
the next phases of the compiler.

● Parse Tree (Concrete Syntax Tree):
○ This is a visual, detailed representation of how the input string (sequence of

tokens) is derived from the start symbol of the grammar using the production
rules.

○ Characteristics:
■ The root of the tree is always the grammar's start symbol.
■ Internal nodes are non-terminals. Each internal node and its

immediate children correspond to an application of a production rule.
■ Leaf nodes are the terminal symbols (tokens) from the input.
■ Reading the leaf nodes from left to right gives you the original input

token string.
○ Purpose: It shows every single step of the derivation process, including

intermediate non-terminals used purely for grammatical structure (like Term
or Factor in arithmetic expressions). It's a very faithful representation of the
grammatical analysis.

Example Parse Tree for var x , y ; using our calculator grammar:
 Program
 / \
 Statement Program (ε)
 |
 var IDList ;
 / \
 ID , IDList
 | / \
 x ID (ε)
 |
 y

●
● Abstract Syntax Tree (AST):

○ While a parse tree shows all grammatical details, an AST is a more compact
and essential representation of the program's structure. It focuses on the core
operations and relationships, stripping away syntactic details that aren't
directly relevant to the program's meaning.

○ Why Abstract? It removes "noise" from the parse tree. For example, it might
omit non-terminals like Term or Factor if their sole purpose was to enforce
operator precedence. It only keeps nodes that represent a computational or
structural meaning.

○ Purpose: The AST is the preferred input for later compiler phases like
semantic analysis and code generation. These phases care about the
meaning and relationships of operations (e.g., "add this to that"), not the

specific grammar rules used to parse them. An AST is easier to traverse and
manipulate programmatically than a full parse tree.

Example AST for x = a + b ; (simplified):
 Assignment
 / \
 ID(x) Addition
 / \
 ID(a) ID(b)

● Compare this to how a full parse tree would represent a + b (it would involve
Expression, Term, Factor nodes). The AST distills it to the essential Addition
operation with its operands.

3. Sentences and Sentential Forms - The Stages of Derivation

When we talk about grammars, we use specific terms to describe the strings that can be
generated or recognized.

● Derivation: This is the process of repeatedly applying the production rules of a CFG,
starting from the start symbol, to transform one string of symbols into another. Each
step involves replacing a non-terminal with the right-hand side of one of its
production rules.

● Sentential Form: Any string that can be derived from the start symbol of a grammar
is called a sentential form. This string can contain a mixture of both non-terminal
symbols (the abstract categories that still need to be expanded) and terminal
symbols (the concrete words that are already formed). Think of it as an intermediate
stage in building a complete program "sentence."

○ Example (using our calculator grammar, starting from Program):
1. Program (Initial state, pure non-terminal)
2. Statement Program (Applied Program -> Statement

Program)
3. var IDList ; Program (Applied Statement -> var IDList

;)
4. var ID , IDList ; Program (Applied IDList -> ID ,

IDList)
5. var x , IDList ; Program (Replaced ID with a specific terminal

x)
6. var x , y ; Program (Replaced ID with y)
7. var x , y ; (Replaced Program with ε (empty string) at the end)

○ All strings in steps 1-6 are sentential forms because they contain at least one
non-terminal.

● Sentence: A sentence is a special type of sentential form. It is a string that can be
derived from the start symbol and consists only of terminal symbols. A sentence
represents a complete and grammatically valid program (or a segment of one) in the
language defined by the grammar. It's the final output of the derivation process.

○ Example (from above): var x , y ; is a sentence because it contains
only terminal symbols (var, x, ,, y, ;). If this string is the input to our parser,
and it successfully recognizes it as valid, then it means var x, y; is a legal
statement in our calculator language.

4. Leftmost and Rightmost Derivations - Following a Path in the Tree

When we perform a derivation, if a sentential form contains more than one non-terminal, we
have a choice about which one to expand (replace with its production rule) next. This choice
leads to different paths for constructing the same parse tree.

● Leftmost Derivation: In a leftmost derivation, at each step, we always choose the
leftmost non-terminal in the current sentential form to replace with its right-hand
side. This is a common strategy for top-down parsers.
Example: Deriving a + b * c from Expression (using our rewritten
arithmetic rules, for clarity):

1. Grammar rules relevant for this example (after left recursion elimination,
which we'll cover later):

■ Expression -> Term Expression'
■ Expression' -> + Term Expression' | ε
■ Term -> Factor Term'
■ Term' -> * Factor Term' | ε
■ Factor -> ID

2. Expression (Start)
3. Term Expression' (Applied Expression -> Term Expression',

leftmost Expression)
4. Factor Term' Expression' (Applied Term -> Factor Term',

leftmost Term)
5. ID Term' Expression' (Applied Factor -> ID, leftmost Factor) -

Let's say ID becomes a
6. a Term' Expression'
7. a Expression' (Applied Term' -> ε, leftmost Term')
8. a + Term Expression' (Applied Expression' -> + Term

Expression', leftmost Expression')
9. a + Factor Term' Expression' (Applied Term -> Factor Term',

leftmost Term)
10. a + ID Term' Expression' (Applied Factor -> ID, leftmost Factor)

- Let's say ID becomes b
11. a + b Term' Expression'
12. a + b * Factor Term' Expression' (Applied Term' -> * Factor

Term', leftmost Term')
13. a + b * ID Term' Expression' (Applied Factor -> ID, leftmost

Factor) - Let's say ID becomes c

14. a + b * c Term' Expression'
15. a + b * c Expression' (Applied Term' -> ε, leftmost Term')
16. a + b * c (Applied Expression' -> ε, leftmost Expression') This

sequence of steps constructs the parse tree from left-to-right, depth-first.
● Rightmost Derivation (Canonical Derivation): In a rightmost derivation, at each

step, we always choose the rightmost non-terminal in the current sentential form to
replace with its right-hand side. This strategy is more common for bottom-up parsers.
Example: Deriving a + b * c from Expression (using the same grammar
rules as above):

1. Expression (Start)
2. Term Expression' (Applied Expression -> Term Expression',

rightmost Expression')
3. Term + Term Expression' (Applied Expression' -> + Term

Expression', rightmost Expression')
4. Term + Term * Factor Term' Expression' (Applied Term' -> *

Factor Term', rightmost Term')
5. Term + Term * ID Term' Expression' (Applied Factor -> ID,

rightmost Factor) - Let's say ID becomes c
6. Term + Term * c Term' Expression'
7. Term + Factor * c Term' Expression' (Applied Term -> Factor

Term', rightmost Term')
8. Term + ID * c Term' Expression' (Applied Factor -> ID,

rightmost Factor) - Let's say ID becomes b
9. Term + b * c Term' Expression'
10. Factor + b * c Term' Expression' (Applied Term -> Factor

Term', rightmost Term')
11. ID + b * c Term' Expression' (Applied Factor -> ID, rightmost

Factor) - Let's say ID becomes a
12. a + b * c Term' Expression'
13. a + b * c Expression' (Applied Term' -> ε, rightmost Term')
14. a + b * c (Applied Expression' -> ε, rightmost Expression') Notice

that both derivations produce the exact same final string and would result in
the same parse tree, even though the order of rule applications is different.

5. Ambiguous Grammars - The Confusion in Meaning

A grammar is considered ambiguous if there is at least one sentence (a valid string of
terminals) in the language that can be derived in more than one distinct way. This means the
sentence has:

● More than one unique parse tree.
● Or, more than one distinct leftmost derivation.
● Or, more than one distinct rightmost derivation.

● Why Ambiguity is a Problem: In programming languages, ambiguity is a major
issue because it leads to uncertainty about the program's intended meaning. If a
compiler could interpret A - B * C in two different ways (either (A - B) * C or A
- (B * C)), the resulting executable code would behave differently depending on
the interpretation, leading to unpredictable and incorrect program execution. A
compiler must have a single, definitive way to parse every valid program.

Classic Example: Arithmetic Expressions without Precedence/Associativity Rules
Consider this simple, ambiguous grammar for expressions: E -> E + E E -> E * E E
-> ID
Now, let's parse the input a + b * c:
Parse Tree 1 (interprets + first, then *):
 E
 /|\
 E + E
 / /|\
 ID E * E
 | | |
 a ID ID
 | |
 b c
This tree implies (a + b) * c.
Parse Tree 2 (interprets * first, then +):
 E
 /|\
 E + E
 /| |
 ID E
 | /|\
 a E * E
 / \ \
 ID ID ID
 | | |
 b c (no, this should be b*c) -> Corrected below
Corrected Parse Tree 2 (interprets * first, then +):
 E
 /|\
 E + E
 / / \
 ID E E
 | / \ |
 a ID * ID
 | |
 b c

● This tree implies a + (b * c).
Since the single input string a + b * c can result in two fundamentally different
parse trees, this grammar is ambiguous.

● Resolving Ambiguity: Compiler designers use two primary mechanisms to remove
ambiguity from grammars:

1. Precedence Rules: These rules define the order in which operators are
evaluated in an expression. For instance, multiplication and division typically
have higher precedence than addition and subtraction.

■ Implementation in Grammar: To enforce precedence, we rewrite the
grammar by introducing new non-terminals, creating a hierarchy
where higher-precedence operations are "lower down" (closer to the
terminals) in the parse tree.

■ Example (for * having higher precedence than +):
■ Expression -> Expression + Term
■ Expression -> Term
■ Term -> Term * Factor
■ Term -> Factor
■ Factor -> ID (or (Expression)) This structure ensures

that Term must be fully resolved before it can be combined
into an Expression, effectively giving * higher precedence.

2. Associativity Rules: These rules define how operators of the same
precedence are grouped when they appear sequentially.

■ Left Associativity: Most arithmetic operators (+, -, *, /) are
left-associative. This means a - b - c is interpreted as (a - b) -
c.

■ Implementation in Grammar: Use left-recursive production
rules.

■ Example: Expression -> Expression + Term (The
Expression on the left-hand side is also the leftmost symbol
on the right-hand side).

■ Right Associativity: Operators like assignment (=) or exponentiation
(**) are often right-associative. This means a = b = c is interpreted
as a = (b = c).

■ Implementation in Grammar: Use right-recursive production
rules.

■ Example: Assignment -> ID = Assignment
● By carefully applying these rules and rewriting the grammar, language designers

ensure that every syntactically correct program has only one unambiguous
interpretation.

6. Overview of Top-Down and Bottom-Up Parsing

The two fundamental strategies for parsing a program relate to how they build the parse
tree.

● Top-Down Parsing (Predictive Parsing): "Building from the Blueprint Down"
○ Approach: Starts at the start symbol (the root of the parse tree) and tries to

expand it downwards to match the input tokens (the leaves).
○ Analogy: Imagine you have a blueprint for a house (the grammar). You start

by drawing the main frame (the start symbol), then you draw in the walls and
roof (major non-terminals), and finally, you add the bricks and windows
(terminals). At each step, you predict what structure should come next based
on the blueprint and what you see on the ground (input).

○ How it Works: The parser tries to predict which production rule for a
non-terminal should be used next to match the incoming input tokens. It
essentially tries to construct a leftmost derivation.

○ Common Techniques: Recursive Descent Parsing, Predictive Parsing
(LL(1)).

○ Characteristics:
■ Easier to implement manually for simpler grammars.
■ Requires the grammar to be free of left recursion and often left

factoring.
■ Less powerful than bottom-up parsers (can't handle as wide a range of

grammars).
● Bottom-Up Parsing (Shift-Reduce Parsing): "Assembling from the Pieces Up"

○ Approach: Starts with the input tokens (the leaves of the parse tree) and
attempts to combine them (reduce them) into higher-level grammatical
constructs, eventually reducing everything to the start symbol (the root).

○ Analogy: You have a pile of LEGO bricks (tokens). You start by snapping
small pieces together to form a door, a window, or a wall segment (reducing
terminals to non-terminals like Factor). Then you combine these segments
into larger structures like a room (Term), and finally, you assemble the rooms
into a complete house (Expression, then Program).

○ How it Works: The parser scans the input, shifting tokens onto a stack.
When the top of the stack contains a sequence of symbols that matches the
right-hand side of a production rule, it "reduces" that sequence to the
non-terminal on the left-hand side of the rule. This effectively builds the parse
tree from the leaves upwards towards the root, constructing a rightmost
derivation in reverse.

○ Common Techniques: Shift-Reduce Parsing, LR Parsers (LR(0), SLR(1),
LALR(1), LR(1)).

○ Characteristics:
■ More powerful; can handle a larger class of grammars than top-down

parsers.
■ Often more complex to implement manually but well-suited for

automatic generation by tools.
■ No issues with left recursion.

Option 1: Bottom-Up Parsing - The Builder's Approach

This section dives into Shift-Reduce parsing, the core idea behind powerful bottom-up
parsers like the LR family.

Introduction to Shift-Reduce Parsing

Shift-Reduce parsing is a strategy that operates by trying to find the "handle" in the parser's
stack. A handle is a substring on the stack that matches the right-hand side of a grammar
production and can be "reduced" to its corresponding non-terminal.

● The Parser's Tools:
○ Input Buffer: This is where the raw stream of tokens from the lexical analyzer

waits to be processed.
○ Stack: This is the parser's primary working area. It's used to store a

sequence of grammar symbols (both terminals that have been read and
non-terminals that have been recognized and reduced). The bottom of the
stack usually has a special marker, often $ (dollar sign), representing the start
of the parse.

○ Parsing Table: This table acts as the parser's brain. It's pre-computed from
the grammar and tells the parser exactly what to do (shift, reduce, accept, or
error) based on the current state (represented by the top of the stack) and the
next input token (called the "lookahead" symbol).

● The Core Actions: The parser continuously performs one of these actions until it
accepts the input or encounters an error:

○ Shift: The parser takes the next incoming token from the input buffer and
pushes it onto the top of the stack. This action essentially moves a token from
the input stream into the parser's active consideration. It's like collecting raw
materials.

○ Reduce: This is the heart of bottom-up parsing. When the symbols on the top
of the stack match the entire right-hand side (beta) of a production rule
(Atobeta), the parser pops these matched symbols from the stack and then
pushes the non-terminal A onto the stack. This signifies that a complete
grammatical construct has been recognized and is now represented by its
higher-level non-terminal. It's like assembling a sub-component from raw
materials.

○ Accept: If the stack contains only the start symbol of the grammar (usually
S') and the input buffer is empty, it means the entire program has been
successfully parsed. The compilation can proceed to the next phase.

○ Error: If the parser cannot perform a shift, reduce, or accept action, it means
the input code violates the language's grammar rules. A syntax error is
reported.

● Example Walkthrough: Parsing a + b with Shift-Reduce Assume simplified
grammar: E -> E + E | ID Initial state: Stack: $ | Input: a + b $ (where $ marks end of
input)

Sta
c
k

Inp
u
t

Action (determined by
Parsing Table)

Explanation

$ a
+
b
$

Shift Push 'a' onto stack.

$
a

+
b
$

Reduce E -> ID 'a' is an ID. Reduce 'ID' to 'E'. Pop 'a',
push 'E'.

$
E

+
b
$

Shift Push '+' onto stack.

$
E
+

b
$

Shift Push 'b' onto stack.

$
E
+
b

$ Reduce E -> ID 'b' is an ID. Reduce 'ID' to 'E'. Pop 'b',
push 'E'.

$
E
+
E

$ Reduce E -> E + E 'E + E' is on top of stack. Reduce to
'E'. Pop 'E,+,E', push 'E'.

$
E

$ Accept Stack has start symbol, input empty.
Success!

●
Export to Sheets

Viable Prefixes and Valid Items - Guiding the Parser's Decisions

To build robust bottom-up parsers, we need a precise way to describe the parser's progress
and potential next steps. This is where "items" come into play.

● Viable Prefix: A viable prefix is any prefix of a rightmost sentential form that can
exist on the stack during a shift-reduce parse. Essentially, it's any sequence of
symbols on the stack that, with some remaining input, could eventually lead to a
complete, valid program. The parser's stack always holds a viable prefix.

○ Example (from a + b parse): $, $a, $E, $E+, $E+b are all viable prefixes.
● Item (LR(0) Item): An item is a production rule with a "dot" (.) placed somewhere in

its right-hand side. The dot indicates how much of the right-hand side of that
production has been successfully recognized (matched) so far. It acts as a pointer to
the current parsing position within a rule.

○ Format: A -> α . β
■ A: The non-terminal on the left-hand side.
■ α: The part of the right-hand side that has already been matched or

processed.
■ .: The marker indicating the current position.
■ β: The part of the right-hand side that is still expected to be seen.

○ Meaning of Dot Positions:
■ A -> . X Y Z: The parser expects to see a string derivable from

XYZ. It's just starting to recognize this rule.
■ A -> X . Y Z: The parser has successfully matched X and now

expects to see a string derivable from YZ.
■ A -> X Y . Z: The parser has successfully matched XY and now

expects to see a string derivable from Z.

■ A -> X Y Z .: The parser has successfully matched the entire
right-hand side XYZ. This item signals a potential reduction using the
production A -> X Y Z.

○ Example Items (for E -> E + E and E -> ID):
■ E -> . E + E (We are looking for an E that starts the production E

+ E)
■ E -> E . + E (We have seen an E and now expect a + followed by

another E)
■ E -> E + . E (We have seen E + and now expect an E)
■ E -> E + E . (We have seen E + E and are ready to reduce to E)
■ E -> . ID (We are looking for an ID)
■ E -> ID . (We have seen an ID and are ready to reduce to E)

○ Role in Parsing: LR parsers work by building states, where each state is a
collection of these items. Each state represents a snapshot of all the possible
production rules the parser could be trying to recognize at a given point,
based on the input scanned so far.

Constructing LR(0) Sets of Items - Defining Parser States

To create an LR parser, we first need to define all the possible "states" it can be in. These
states are formally represented by "sets of LR(0) items." The process of generating these
sets involves two key operations: CLOSURE and GOTO.

1. Augmented Grammar: Before starting, we modify the original grammar by adding a
new start production: S' -> S. Here, S' is a new, unique start symbol, and S is the
original start symbol.

1. Why? This ensures that there is a single, clear production whose reduction
signals that the entire input program has been successfully parsed (i.e., when
S' -> S . is recognized). It also prevents S from appearing on the
right-hand side of any production, simplifying the logic for the final "accept"
action.

2. CLOSURE Operation:
1. Purpose: The CLOSURE operation expands a set of items to include all items

that are implied by the current items. If an item indicates that we are
expecting to see a non-terminal (i.e., the dot is before a non-terminal), then
we must also start looking for all the possible ways that non-terminal can
begin.

2. Rule: If A -> α . Bβ is an item in a set I (meaning we've parsed α and are
now expecting B), and B -> γ is any production rule for non-terminal B, then
we add the item B -> . γ to CLOSURE(I). We repeat this until no new
items can be added.

3. Analogy: If your recipe says "make a sandwich," and a sandwich can start
with "bread," then you also need to consider the recipe for "bread" itself.

4. Example:
■ I = { E -> . Term Expression' (from our grammar)

■ Since we're expecting Term, and Term -> Factor Term' is a
production, we add Term -> . Factor Term' to CLOSURE(I).

■ Since we're expecting Factor (from the new Term item), and
Factor -> ID is a production, we add Factor -> . ID to
CLOSURE(I).

■ And Factor -> (Expression) is a production, so we add
Factor -> . (Expression) to CLOSURE(I).

3. GOTO Operation:
1. Purpose: The GOTO operation determines the next state (set of items) the

parser moves to after successfully recognizing a particular grammar symbol
(terminal or non-terminal). It simulates the parser "consuming" that symbol.

2. Rule: GOTO(I, X) for a set of items I and a grammar symbol X. It finds all
items in I where the dot is immediately before X (e.g., A -> α . Xβ). For
each such item, it moves the dot past X (to A -> αX . β). Then, it takes the
CLOSURE of this new set of items.

3. Analogy: If you're currently in a state where you've drawn the if frame, and
you then successfully add the Expression part, GOTO tells you what new
state you're in (the state where you've seen if (Expression)).

4. Building the Canonical Collection of LR(0) Items:
1. This is the algorithm to generate all the unique states (sets of items) that the

LR(0) parser can possibly be in.
2. Start with an initial state I0, which is the CLOSURE of the augmented start

item: CLOSURE(\{S' \to .S\}).
3. Maintain a list of states to process (initially just I0).
4. For each state I in the list, and for every grammar symbol X (terminal or

non-terminal) that appears immediately after a dot in any item within I:
■ Compute J = GOTO(I, X).
■ If J is not an empty set and is not already in our collection of states,

add J to the collection and to the list of states to process.
5. Repeat step 3 until no new states can be generated.

5. The resulting collection of states forms the basis for constructing the LR parsing
tables.

Constructing SLR Parsing Tables (Simple LR)

SLR (Simple LR) parsing is a practical and widely used bottom-up parsing technique. It
leverages the LR(0) sets of items but adds a crucial element for making reduce decisions:
the FOLLOW set. This "lookahead" helps resolve some ambiguities that LR(0) alone cannot.

● SLR Parsing Table Structure: The table has two main parts:
○ ACTION Table: This part dictates the parser's action based on the current

state (row index) and the next input terminal (column index).
■ ACTION[State_i, Terminal_a] can be:

■ shift j: Push the terminal a onto the stack and transition to
state j. This is the most common action when the parser
needs more input to recognize a full grammar rule.

■ reduce A -> β: Pop |β| (length of beta) symbols from the
stack, then push A onto the stack, and use the GOTO table to
determine the new state. This happens when the parser has
identified a complete right-hand side of a production.

■ accept: The input has been successfully parsed. This
happens only when the stack contains S' and the input is
empty.

■ error: A syntax error has been detected. The input does not
conform to the grammar.

○ GOTO Table: This part dictates the parser's next state after a reduction.
■ GOTO[State_i, NonTerminal_A] = State_j: If the parser is in

State_i and reduces a sequence of symbols to NonTerminal_A, it
then transitions to State_j.

● Rules for Constructing SLR Parsing Table Entries:
○ Shift Actions:

■ For each state I_i in the LR(0) item collection:
■ If A -> α . aβ is an item in I_i (meaning we've seen α and a is the

next terminal expected) and GOTO(I_i, a) leads to state I_j:
■ Then, set ACTION[i, a] = shift j.

○ Reduce Actions:
■ For each state I_i in the LR(0) item collection:
■ If A -> α . is an item in I_i (meaning we have successfully

matched the entire right-hand side α for production A -> α):
■ Then, for every terminal b in FOLLOW(A) (including $ if A can be

followed by end-of-input):
■ Set ACTION[i, b] = reduce A -> α.
■ Crucial Role of FOLLOW(A): The FOLLOW(A) set is vital here. It

ensures that a reduction is only performed if the next input token (b) is
actually one that could legally come after the non-terminal A in a valid
program. If b is not in FOLLOW(A), then reducing to A would lead to
an incorrect parse.

○ Accept Action:
■ If S' -> S . is an item in state I_i (meaning the augmented start

symbol has been fully recognized):
■ Then, set ACTION[i, $] = accept.

○ GOTO Actions:
■ For each state I_i in the LR(0) item collection:
■ If GOTO(I_i, A) leads to state I_j (where A is a non-terminal):
■ Then, set GOTO[i, A] = j.

● SLR Conflicts: A grammar is SLR(1) if and only if the SLR parsing table contains no
conflicts. If a cell in the ACTION table needs to be filled with more than one action, it's
a conflict:

○ Shift/Reduce Conflict: Occurs if a state I_i contains both an item A -> α
. aβ (suggesting a shift on terminal a) AND an item B -> γ . (suggesting
a reduce using B -> γ), where a is also in FOLLOW(B). The parser cannot
decide whether to shift a or reduce.

○ Reduce/Reduce Conflict: Occurs if a state I_i contains two reduce items A
-> α . and B -> β ., AND FOLLOW(A) and FOLLOW(B) have at least one
common terminal. The parser cannot decide which of the two rules to reduce
by. If these conflicts arise, the grammar is not SLR(1), and more powerful LR
parsing methods (like LALR(1) or LR(1)) might be needed, or the grammar
itself needs to be redesigned.

Generating a Parser using a Parser Generator such as YACC/Bison

Manually constructing LR parsing tables for real-world programming languages is extremely
tedious and error-prone due to the sheer number of states and transitions. This is where
parser generators come in.

● YACC (Yet Another Compiler Compiler) / Bison (GNU version of YACC):
○ These are classic and widely used parser generators, primarily generating

LALR(1) parsers. LALR(1) is a powerful variant of LR parsing that combines
states from LR(1) to create smaller tables while retaining much of the power
of full LR(1), making it a practical choice for most programming languages.

○ Input: You provide YACC/Bison with a grammar specification file (traditionally
with a .y or .yy extension). This file describes your language's grammar
using a specialized syntax and includes C code snippets for semantic actions.

○ Structure of a YACC/Bison Input File: It typically has three main sections,
separated by %%:

■ Declarations Section:
■ Includes C header files (#include).
■ Defines the tokens (terminals) that the lexical analyzer (like

Flex) will provide. For example: %token INT ID NUM PLUS
MINUS.

■ Declares non-terminals: %type <value_type>
Expression Statement.

Specifies operator precedence and associativity. This is how YACC/Bison resolves
common ambiguities directly. For example:
Code snippet
%left PLUS MINUS
%left TIMES DIVIDE
%right ASSIGN

■ (%left means left-associative, %right means
right-associative, order determines precedence from lowest to
highest.)

■ Specifies the start symbol: %start Program.
■ Grammar Rules Section:

■ This is where you define the production rules of your
Context-Free Grammar.

■ Each rule can have an associated semantic action – a block
of C code that is executed whenever that specific grammar
rule is successfully reduced.

■ Semantic Actions: This is where the parser interacts with the
next phases of the compiler. You can access the values of the
symbols on the right-hand side of the rule using $1, $2, $3,
etc. (representing the first, second, third symbol from the
right-hand side). The result of the rule can be assigned to $$.

Example Rule with Semantic Action:
Code snippet
expression : expression PLUS term
 { $$ = $1 + $3; } // Add the value of the first expression ($1) to the third term ($3)
 ;
expression : term
 { $$ = $1; } // The value of the expression is just the value of the term
 ;

■
■ Auxiliary Functions Section:

■ Contains any additional C code needed for the parser, such as
error handling routines (yyerror), the main function to drive
the parser (yyparse), or helper functions.

● Compilation Process with YACC/Bison and Lex/Flex:
○ Lexical Analysis (Flex/Lex):

■ You write a lexical specification file (e.g., lexer.l) for Flex/Lex.
■ Run flex lexer.l which generates lex.yy.c (the C source code

for your lexer).
○ Syntax Analysis (YACC/Bison):

■ You write a grammar specification file (e.g., parser.y) for
YACC/Bison.

■ Run bison -d parser.y (or yacc -d parser.y). The -d option
generates a header file (parser.tab.h) containing token definitions
that lex.yy.c needs. This command generates parser.tab.c (the
C source code for your parser, containing the LALR parsing tables).

○ Compilation:
■ Compile both generated C files (lex.yy.c and parser.tab.c)

together with your own auxiliary C code using a C compiler (e.g., gcc
lex.yy.c parser.tab.c -o myparser).

○ Execution: Run the myparser executable, which will read your input source
code, tokenized by the lexer, and parsed by the parser.

● Benefits: Parser generators significantly simplify compiler development by:
○ Automating Table Construction: Eliminating the tedious and error-prone

manual creation of parsing tables.
○ Handling Complexity: Managing complex grammar rules and even resolving

common ambiguities (like operator precedence/associativity) automatically.
○ Speeding Development: Allowing developers to focus on the language

design and semantic processing rather than low-level parsing logic.

Option 2: Top-Down Parsing - The Predictive Approach

This option explores top-down parsing strategies, which try to derive the input by expanding
grammar rules from the start symbol downwards. These methods are typically easier to
understand and implement manually for simpler grammars.

Top-Down Parsing

Top-down parsing starts with the highest-level grammatical structure (the start symbol) and
progressively tries to derive the input tokens. It attempts to build the parse tree from the root
towards the leaves.

● How it Works:
○ The parser maintains a stack, initially containing the start symbol.
○ It continuously compares the symbol at the top of its stack with the next input

token (the "lookahead").
○ If the top of the stack is a Non-terminal (A): The parser looks at the current

input token. Based on this token, it predicts which production rule for A
(Atobeta) should be applied. It then pops A from the stack and pushes the
symbols of beta onto the stack in reverse order (so the first symbol of beta is
at the top of the stack).

○ If the top of the stack is a Terminal (a): It checks if a matches the current
input token.

■ If they match, both a is popped from the stack and the input token is
consumed (parser moves to the next input token).

■ If they don't match, a syntax error is reported.
○ If the stack is empty and the input is consumed: The parse is successful.

● Key Challenge: Prediction: The critical part for top-down parsing is making the
correct prediction (choosing the right production rule) without "backtracking" (trying
one rule, failing, and then undoing and trying another). This requires careful grammar
design.

Left Factoring - Resolving Ambiguous Choices

Left factoring is a grammar transformation technique specifically designed to make
grammars suitable for predictive top-down parsers.

● The Problem: Predictive parsers need to make a unique choice for a production rule
based on the next input token. If a non-terminal has two or more production rules that
start with the same sequence of symbols (a common prefix), the parser cannot
decide which rule to apply by just looking at the next token.

○ Example: Statement -> if (Expression) Statement else
Statement Statement -> if (Expression) Statement

○ If the parser sees the token if, it has two Statement productions that both
start with if (Expression) Statement. It doesn't know which one to
choose until it sees if an else follows later. This uncertainty is unacceptable
for a predictive parser.

● The Solution: You factor out the common prefix and introduce a new non-terminal to
represent the parts that differ.

○ General Transformation:
■ Original: A -> αβ1 | αβ2 (where α is the common prefix, β1 and

β2 are the differing suffixes)
■ Left-Factored: A -> αA' A' -> β1 | β2 (or ε if one of βs can be

empty)
○ Applying to the Statement Example:

■ Original: Statement -> if (Expression) Statement else
Statement Statement -> if (Expression) Statement

■ Left-Factored: Statement -> if (Expression) Statement
StatementTail StatementTail -> else Statement
StatementTail -> ε (meaning, the else part is optional)

○ How it Helps: Now, when the parser sees if (Expression)
Statement, it applies the rule Statement -> if (Expression)
Statement StatementTail. Then, it looks at the input again to decide on
StatementTail. If it sees else, it chooses StatementTail -> else
Statement. If it sees anything else, it chooses StatementTail -> ε. This
eliminates the immediate ambiguity in choice.

Elimination of Left Recursion - Avoiding Infinite Loops

Left recursion is another common grammatical pattern that is problematic for top-down
parsers, particularly recursive descent parsers, as it can lead to infinite loops.

● The Problem: A production rule is left-recursive if a non-terminal can derive a string
that starts with itself.

○ Direct Left Recursion: A -> Aα (e.g., Expression -> Expression +
Term). If a recursive descent function for Expression tries to apply this rule,
it would immediately call parseExpression() again, leading to an infinite
loop and stack overflow.

○ Indirect Left Recursion: A -> Bα, B -> Cβ, C -> Aγ (A eventually leads
back to A).

● The Solution (for Direct Left Recursion): Left-recursive rules can be systematically
rewritten into equivalent, non-left-recursive forms. The trick is to convert the left
recursion into right recursion.

○ General Transformation:
■ Original (left-recursive): A -> Aα | β (where β represents any

alternatives that do not start with A).
■ Rewritten (non-left-recursive): A -> βA' (The non-recursive part

comes first) A' -> αA' | ε (The A' non-terminal handles the
repeating part, with ε for optional repetition)

○ Applying to Our Arithmetic Grammar Example:
■ Original Left-Recursive Rules: Expression -> Expression +

Term Expression -> Expression - Term Expression ->
Term (This is the 'β' part, as it doesn't start with Expression) Term
-> Term * Factor Term -> Term / Factor Term -> Factor
(This is the 'β' part for Term)

■ After Elimination (applying the transformation to Expression):
1. Expression -> Term Expression' (Here β is Term, α is

+ Term or - Term)
2. Expression' -> + Term Expression'
3. Expression' -> - Term Expression'
4. Expression' -> ε (The "nothing more" option)

■ After Elimination (applying the transformation to Term): 5. Term ->
Factor Term' (Here β is Factor, α is * Factor or / Factor) 6.
Term' -> * Factor Term' 7. Term' -> / Factor Term' 8.
Term' -> ε

○ (The Factor rules Factor -> (Expression) | ID | NUM remain
unchanged.)

● This transformed grammar generates the exact same language but is now suitable
for top-down parsing because no non-terminal directly calls itself as its first symbol.

Predictive Parsing - The Lookahead-Driven Parser (LL(1))

Predictive parsing is a form of top-down parsing that makes parsing decisions without
backtracking. This is achieved by using a fixed amount of "lookahead" (usually one token) to
uniquely determine which production rule to apply. The most common type is LL(1) parsing.

● LL(1) Meaning:
1. The first L: The input is scanned from Left to right.
2. The second L: It constructs a Leftmost derivation.
3. The (1): It uses 1 token of lookahead to make its parsing decisions.

● How it Works: An LL(1) parser is driven by a parsing table (let's call it M). This table
tells the parser which production rule to use for a non-terminal A given that the next
input token is a.

1. If M[A, a] contains a production A -> β, the parser applies this rule.

2. If M[A, a] is empty, it means a is not expected here, and a syntax error has
occurred.

● Key Sets for Table Construction: FIRST and FOLLOW: To build the LL(1) parsing
table, we need to compute two sets for every non-terminal and for the right-hand side
of every production:

1. FIRST(α): For any string of grammar symbols α (which can be a single
terminal, a single non-terminal, or a sequence of them), FIRST(α) is the set
of all terminal symbols that can possibly appear as the first symbol of a
string derived from α.

■ If α is a terminal a: FIRST(a) = {a}.
■ If α is a non-terminal A:

■ If A -> aβ is a production (where a is a terminal), then a is in
FIRST(A).

■ If A -> Bγ is a production (where B is a non-terminal), then
everything in FIRST(B) (except ε, if B can derive ε) is in
FIRST(A).

■ If A -> ε is a production, then ε is in FIRST(A).
■ If α is a sequence X1 X2 ... Xn:

■ FIRST(X1) is added to FIRST(α).
■ If X1 can derive ε, then FIRST(X2) is also added. This

continues until Xk is found that cannot derive ε, or all Xs are
exhausted (in which case, if all can derive ε, then ε is in
FIRST(α)).

■ Purpose: FIRST(α) tells the parser what tokens start a string that
can be generated by α.

2. FOLLOW(A): For any non-terminal A, FOLLOW(A) is the set of all terminal
symbols b that can appear immediately after A in some valid sentential form.

■ Rules for computing FOLLOW(A):
■ If A is the start symbol, then $ (end-of-input marker) is in

FOLLOW(A).
■ If there is a production B -> αAβ (meaning A is followed by

β):
■ Everything in FIRST(β) (except ε) is in FOLLOW(A).
■ If β can derive ε (i.e., ε is in FIRST(β)), then

everything in FOLLOW(B) is also in FOLLOW(A).
■ If there is a production B -> αA (meaning A is at the end of

the rule):
■ Everything in FOLLOW(B) is in FOLLOW(A).

■ Purpose: FOLLOW(A) tells the parser what tokens can come after a
completed non-terminal A. This is crucial for handling ε productions
(where a non-terminal might expand to nothing).

● Rules for Building the LL(1) Parsing Table M[A, a]: For each production A -> α
in the grammar:

1. For every terminal a in FIRST(α) (where a is not ε):
■ Add the production A -> α to M[A, a].

2. If ε is in FIRST(α) (meaning α can derive the empty string):
■ For every terminal b in FOLLOW(A):

■ Add the production A -> α to M[A, b].
■ If $ is in FOLLOW(A) (and ε is in FIRST(α)), add A -> α to M[A,

$].
● LL(1) Grammar Condition: A grammar is LL(1) if and only if each cell in the parsing

table M contains at most one production rule. If any cell has more than one rule, the
grammar is not LL(1), and a predictive parser cannot be built for it without more
lookahead or grammar modification (e.g., resolving common prefixes or left
recursion).

Recursive Descent Parsing - The Hands-On Approach

Recursive descent parsing is a straightforward, manual way to implement a top-down parser.
It's intuitive because it directly maps grammar rules to functions (procedures) in your code.

● Concept:
○ For every non-terminal in your grammar (e.g., Expression, Statement,

Term), you write a corresponding function (procedure) in your parser.
○ This function's job is to parse any input string that can be derived from that

non-terminal.
○ The functions call each other recursively to parse sub-structures, mimicking

the hierarchy of the grammar.
○ A global lookahead variable holds the current input token, which guides the

parsing decisions.

Basic Structure of a Non-terminal Function (e.g., parseFactor()):
// Function for non-terminal Factor
parseFactor() {
 // Check the lookahead to decide which Factor production to use
 if (lookahead == ID) {
 match(ID); // Match and consume the ID token
 } else if (lookahead == NUM) {
 match(NUM); // Match and consume the NUM token
 } else if (lookahead == '(') {
 match('(');
 parseExpression(); // Recursively call function for Expression
 match(')');
 } else {
 error("Expected ID, NUM, or '('"); // Syntax error
 }
}

// Helper function to match and consume a terminal
match(expectedToken) {

 if (lookahead == expectedToken) {
 lookahead = get_next_token(); // Advance to the next input token
 } else {
 error("Mismatched token. Expected " + expectedToken + " but got " + lookahead);
 }
}

●
● Advantages:

○ Simplicity: For relatively simple grammars, recursive descent parsers are
very easy to write and understand.

○ Direct Mapping: The structure of the parser code directly reflects the
structure of the grammar, making it intuitive.

○ Good Error Reporting: It's often easier to embed custom error messages in
a hand-written parser.

● Disadvantages:
○ Grammar Restrictions: Cannot directly handle left-recursive grammars

(requires prior elimination). Requires the grammar to be left-factored. If the
grammar isn't LL(1), manual backtracking logic becomes very complex and
inefficient.

○ Tedious for Large Grammars: Writing a function for every non-terminal in a
large language can be extremely time-consuming and prone to errors.

○ Maintenance: Changes to the grammar require manual changes to the
parser code.

Generating a Parser using a Parser Generator such as ANTLR, JavaCC, etc.

Just as YACC/Bison automate LR parsing, tools like ANTLR and JavaCC automate the
creation of top-down parsers, significantly streamlining the development process.

● ANTLR (ANother Tool for Language Recognition):
○ Type of Parser: ANTLR generates LL(*) parsers. This is a powerful form of

LL parsing that can use arbitrary lookahead (not just one token, hence *) to
make parsing decisions. This means it can handle a wider range of grammars
than strict LL(1) parsers.

○ Key Features:
■ Automatic Grammar Transformations: While it's good practice to

understand left recursion and left factoring, ANTLR can often handle
these issues internally or guide you on how to restructure your
grammar for optimal performance, simplifying the grammar writing
process.

■ Multi-language Target: It can generate parser code in a variety of
programming languages (Java, C#, Python, JavaScript, C++, Go,
Swift), making it highly versatile.

■ Parse Tree/AST Generation: ANTLR automatically builds a parse
tree (which can then be used to construct an AST via "listeners" or
"visitors"), making it easy to integrate with subsequent compiler
phases.

■ Robust Error Recovery: It provides sophisticated mechanisms for
handling syntax errors gracefully, attempting to recover and continue
parsing to find more errors.

○ Input: You define your language's grammar in a .g4 file, specifying both
lexical rules (for tokens) and parser rules (for grammar productions).

○ Output: Source code for the parser and lexer in your chosen target language.
● JavaCC (Java Compiler Compiler):

○ Type of Parser: JavaCC primarily generates LL(k) parsers, where k is a
fixed number of lookahead tokens (often 1, but configurable).

○ Key Features:
■ Java-centric: It generates parser code exclusively in Java, making it

popular in Java-based compiler projects.
■ Grammar Requirements: Unlike ANTLR, JavaCC explicitly requires

the input grammar to be free of left recursion and typically expects
manual left factoring. It does not automatically perform these
transformations.

■ Embedded Actions: You embed Java code directly within the
grammar rules for semantic actions, similar to YACC/Bison's C code.

○ Input: A grammar file (typically .jj) containing token and production
definitions along with embedded Java code.

○ Output: Java source files for the parser and lexer, which you then compile
with a Java compiler.

● General Advantages of Parser Generators:
○ Increased Productivity: Automate a complex and error-prone part of

compiler construction.
○ Consistency: Generated parsers adhere strictly to the defined grammar

rules.
○ Maintainability: Changes to the grammar are made in a single, high-level

specification file, not in sprawling manual code.
○ Robustness: Generated parsers are often more robust and handle edge

cases and error recovery better than hand-written ones.
○ Rapid Prototyping: Quickly test grammar changes and language features.

	Module 3: Syntax Analysis (Parsing)
	This module is about the compiler's crucial "grammar check" phase: Syntax Analysis, also known as Parsing. After the Lexical Analyzer has broken the raw source code into meaningful "words" (tokens), the parser steps in to ensure these words are arranged according to the language's rules, forming grammatically correct "sentences" and "paragraphs." We'll explore the formal definitions of language structure, how parsers systematically verify this structure, and the tools that automate this complex task.
	1. Context-Free Grammars (CFG) - The Language's Blueprint
	2. Concept of Parsing - The Syntax Checker
	3. Sentences and Sentential Forms - The Stages of Derivation
	4. Leftmost and Rightmost Derivations - Following a Path in the Tree
	5. Ambiguous Grammars - The Confusion in Meaning
	6. Overview of Top-Down and Bottom-Up Parsing
	Option 1: Bottom-Up Parsing - The Builder's Approach
	Introduction to Shift-Reduce Parsing
	Viable Prefixes and Valid Items - Guiding the Parser's Decisions
	Constructing LR(0) Sets of Items - Defining Parser States
	Constructing SLR Parsing Tables (Simple LR)
	Generating a Parser using a Parser Generator such as YACC/Bison

	Option 2: Top-Down Parsing - The Predictive Approach
	Top-Down Parsing
	Left Factoring - Resolving Ambiguous Choices
	Elimination of Left Recursion - Avoiding Infinite Loops
	Predictive Parsing - The Lookahead-Driven Parser (LL(1))
	Recursive Descent Parsing - The Hands-On Approach
	Generating a Parser using a Parser Generator such as ANTLR, JavaCC, etc.

